Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE.

نویسندگان

  • Mireille van Damme
  • Tieme Zeilmaker
  • Joyce Elberse
  • Annemiek Andel
  • Monique de Sain-van der Velden
  • Guido van den Ackerveken
چکیده

Plant disease resistance is commonly triggered by early pathogen recognition and activation of immunity. An alternative form of resistance is mediated by recessive downy mildew resistant 1 (dmr1) alleles in Arabidopsis thaliana. Map-based cloning revealed that DMR1 encodes homoserine kinase (HSK). Six independent dmr1 mutants each carry a different amino acid substitution in the HSK protein. Amino acid analysis revealed that dmr1 mutants contain high levels of homoserine that is undetectable in wild-type plants. Surprisingly, the level of amino acids downstream in the aspartate (Asp) pathway was not reduced in dmr1 mutants. Exogenous homoserine does not directly affect pathogen growth but induces resistance when infiltrated in Arabidopsis. We provide evidence that homoserine accumulation in the chloroplast triggers a novel form of downy mildew resistance that is independent of known immune responses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Powdery Mildew Resistance in Tomato by Impairment of SlPMR4 and SlDMR1

Genetic dissection of disease susceptibility in Arabidopsis to powdery and downy mildew has identified multiple susceptibility (S) genes whose impairment results in disease resistance. Although several of these S-genes have been cloned and characterized in more detail it is unknown to which degree their function in disease susceptibility is conserved among different plant species. Moreover, it ...

متن کامل

Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes.

We describe the identification of a mutant in the Arabidopsis accession Columbia (Col-0) that exhibits enhanced downy mildew (edm1) susceptibility to several Peronospora parasitica isolates, including the RPP7-diagnostic isolate Hiks1. The mutation was mapped to chromosome IV and characterized physically as a 35-kb deletion spanning seven genes. One of these genes complemented the mutant to ful...

متن کامل

A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes.

Recognition of pathogens by plants is mediated by several distinct families of functionally variable but structurally related disease resistance (R) genes. The largest family is defined by the presence of a putative nucleotide binding domain and 12 to 21 leucine-rich repeats (LRRs). The function of these LRRs has not been defined, but they are speculated to bind pathogen-derived ligands. We hav...

متن کامل

Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9.

The Arabidopsis Ler-RPP27 gene confers AtSgt1b-independent resistance to downy mildew (Peronospora parasitica) isolate Hiks1. The RPP27 locus was mapped to a four-bacterial artificial chromosome interval on chromosome 1 from genetic analysis of a cross between the enhanced susceptibility mutant Col-edm1 (Col-sgt1) and Landsberg erecta (Ler-0). A Cf-like candidate gene in this interval was PCR a...

متن کامل

Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew.

The Arabidopsis mutant downy mildew resistant 6 (dmr6) carries a recessive mutation that results in the loss of susceptibility to Hyaloperonospora parasitica. Here we describe the map-based cloning of DMR6 (At5g24530), which was found to encode a 2-oxoglutarate (2OG)-Fe(II) oxygenase of unknown function. DMR6 transcription is locally induced during infections with both compatible and incompatib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2009